Marking Scheme

PRACTICE TEST

KVS LUCKNOW REGION 2020-21

CLASS-X

SUBJECT- MATHEMATICS(BASIC)-241

Max. Marks: 80

	PART-A				
	SECTION-I	Marks			
Q.1	"product of two numbers"				
	OR				
	axb or ab				
Q.2	"1"	1			
Q.3	"non terminating non repeating."	1			
	OR				
	"terminating"	1			
Q.4	"3" or "three"	1			
Q.5	For correct condition of no solution	1/2			
	For $k = \frac{-10}{3}$	1/2			
Q.6	"consistent"	1			
Q.7	For correct statement of Basic Proportionality theorem	1			
	OR				
	"proportional"	1			
Q.8	1 201 1	1/2			
	$sin^2\theta + \frac{1}{1 + tan^2\theta} = sin^2\theta + \frac{1}{sec^2\theta}$				
	$= sin^2\theta + cos^2\theta = 1$	1/2			
	OR				
	$\sin \theta = \sqrt{3} \cos \theta$.				
	$\frac{\sin\theta}{\cos\theta} = \sqrt{3}$	1⁄2			
	$\tan \theta = \tan 60^{\circ}$	1/2			
	$\theta = 60^{\circ}$	1/2			
Q.9	$\tan \theta = \frac{h}{1} = \frac{1}{1} = \tan 30^{\circ}$	1/2			
	$\sqrt{3}h$ $\sqrt{3}$ $\sqrt{3}h$	1/2			
	$\theta = 30^{\circ}$				
Q.10	"right angle" or 90 ⁰	1			
Q.11	Area of semicircle= $\frac{1}{2}\pi r^2 = 7700 \ sq.m$				
	$\therefore r = 70 m$	1/2			
	\therefore diameter = 2r = 140 m				
		1/2			
Q.12	Length of arc = $\frac{\theta}{360^{\circ}} \times 2\pi r$	1			
Q.13	Volume of cylinder: Volume of cone = $\frac{\pi r^2 h}{1}$	1/2			
	$\frac{1}{3}\pi r^2 h$	1/2			
	=3:1				
Q.14	Mode = 3 Median – 2 Mean	1			
Q.15	The probability of an impossible event is 0.	1			

	OR					
	P(getting 7 on the upper face of a die) = 0					
Q.16	P(not E) = 1- P(E)					
	P(not E) =1-0.95 = 0.05					
	SECTION-II					
Q.17	Case Study-1					
	i) Correct option is : d) parabola					
	ii) Correct option is : a) 2		1			
	iii) Correct option is : b) -1, 3		1			
	iv) Correct option is : c) $x^2 - 2x - 3$		1			
	v) Correct option is : d) 0		1			
Q.18	Case Study-2					
	Beehive					
	i) Correct option is : a) 6		1			
	ii) Correct option is : c) both similar and c	ongruent	1			
	iii) Correct option is : a) 6		1			
	iv) Correct option is : d) $9\sqrt{3}$ sq. units		1			
	v) Correct option is : b) $54\sqrt{3}$ sq. units		1			
Q.19	Case Study-3					
	Plotter					
	i) Correct option is : b) (16,8)		1			
	ii) Correct option is : c) (13,10), (19,10), (19,6), (13,6)	1			
	iii) Correct option is : b) 1		1			
	iv) Correct option is : a) (0,8)		1			
	v) Correct option is : b) (16,0)		1			
Q.20	Case Study-4					
	WATER SUMP					
	i) Correct option is : b) x-2		1			
	ii) Correct option is : b) 20 m3		1			
	iii) Correct option is : a) 38 m ²		1			
	iv) Correct option is : c)Rs.1520		1			
	v) Correct option is : <i>d</i>)20000 <i>litres</i>		1			
	PART-B					
Q.21	given AP: -4, 4, 12, 20,					
	∴ a=-4, d = 4-(-4) = 4+4 =8		1			
	a ₁₅ = a + 14 d = -4 +14x8 = -4 + 112 = 108					
Q.22	For correct: Given, To prove and Construction					
	For correct proof of the theorem		1			
	OR	OR				
	BD= speed x time = $1.2 \text{ m/s} \times 4 \text{ s} = 4.8 \text{ m}$					
	$as \ \Delta CDE \cong \Delta ABE \qquad \qquad$					
	$\therefore \qquad \frac{DL}{BE} = \frac{CD}{AB}$					
	$\frac{DE}{DE} = \frac{0.9}{0.9}$.DE=1.6 m					
	4.8+DE 3.6 ,					

Q.27	Let us assume, to the contrary, that $\sqrt{5}$ is rational. That is, we can find integers a			
	and b ($\neq 0$) such that $\sqrt{5} = \frac{a}{3}$, and assume that a and b are coprime			
	b	1		
	S0, $\sqrt{5}$ D = d			
	Squaring on both sides, and rearranging, we get $E_{1}^{2} = 2^{2}$. Therefore, 2^{2} is divisible by E and by Theorem 1.2, it follows that a is also			
	divisible by E			
	$\frac{1}{2}$	1		
	So, we can write a = 5c for some integer c. we get $5b^2 = 25a^2$ that is $b^2 = 5a^2$. This means that b^2 is divisible by 5, and so b is			
	we get $50^{\circ} - 25a^{\circ}$, that is, $0^{\circ} - 5a^{\circ}$. This means that 0° is divisible by 5, and 50 b is			
	also divisible by 5 (using medicini 1.5 with $p = 5$). Therefore, a and b have at least 5			
	as a common factor. But this contradicts the fact that a and b are coprime. This contradicts the fact that a and b are coprime. This			
	contradiction has ansen because of our incorrect assumption that $\sqrt{5}$ is rational. So,	1		
	we conclude that $\sqrt{5}$ is irrational.			
Q.28	Let the required fraction be x/y	1/2		
	According to problem, $\frac{x-1}{y} = \frac{1}{3}$			
	or $3x - y = 3$ (1)	1/2		
	again $\frac{x}{x} = \frac{1}{2}$			
	$y_{+8} = 4$			
	or $4x - y = 8$	1/2		
	on solving equation 1 and 2 we get, $x = 5$ and $y = 12$	1		
	therefore required fraction is $\frac{3}{12}$	1∕₂		
0.20	$(x^2 - 7x + 2) = 0$ comparing with $ax^2 + bx + a = 0$ we get $a = 0 + 7 + 2$			
Q.29	$bx^2 - 7x + 2 = 0$, comparing with $ax^2 + bx + c = 0$ we get a=6, b= -7, c= 2	1		
	Discriminant, $D = D^2 - 4 ac = (-7)^2 - 4(6)(2) = 1 > 0$	1 1/		
	Given equation has real roots.	½ 1∕		
	$X = \frac{-b \pm \sqrt{b^2 - 4dc}}{2a},$	/2		
	$X = \frac{-(-7)\pm 1}{2\times 6} = 2/3$, $\frac{1}{2}$	1		
	OR			
	$3x^2 - 2\sqrt{6}x + 2 = 0,$			
	$\Rightarrow (\sqrt{3} x)^2 - 2(\sqrt{3} x)(\sqrt{2}) + (\sqrt{2})^2 = 0$	1		
	$\Rightarrow \left(\sqrt{3} x - \sqrt{2}\right)^2 = 0$			
	$\Rightarrow \sqrt{3} x - \sqrt{2} = 0 \text{ and } \sqrt{3} x - \sqrt{2} = 0$	1		
	$\Rightarrow x = \frac{\sqrt{2}}{\sqrt{2}}, \frac{\sqrt{2}}{\sqrt{2}}$ or $x = \frac{2}{\sqrt{2}}, \frac{2}{\sqrt{2}}$	1		
	$\sqrt{3}$, $\sqrt{3}$, $\sqrt{3}$, $\sqrt{3}$, $\sqrt{3}$	T		
Q.30	$\cot^2 \alpha$			
	$1 + \frac{1}{1 + \cos \alpha} = \csc \alpha$			
	$cot^2 \alpha$			
	$L \Pi S = 1 + \frac{1}{1 + cosec \alpha}$			
	$-1 + \frac{\csc^2 \alpha - 1}{1}$	1		
	-1 $1 + cosec \alpha$			
	$= 1 + \frac{(cosec \ \alpha + 1)(cosec \ \alpha - 1)}{(cosec \ \alpha - 1)}$	1		
	$1 + cosec \alpha$			
	$= 1 + cosec \alpha - 1$			
	$= cosec \alpha$			
	= RHS hence proved	1		

	OR				
	$\tan^4 \theta + \tan^2 \theta = \sec^4 \theta - \sec^2 \theta$				
	$IHS = \tan^4 \theta + \tan^2 \theta$				
	$\frac{110}{-} \tan^2 \theta (\tan^2 \theta + 1)$				
	$= (an^2 \theta - 1)(aa^2 \theta)$				
	$= (\sec \theta - 1)(\sec \theta)$				
	$= Sec \theta - Sec \theta$	1			
	= RHS hence proved				
Q.31	For Given, To prove, Construction				
	For correct proof				
	Given : A circle C (O, r) and two tangents say PQ and PR from an external point P. To prove : $PQ = PR$.				
	Q				
	O				
	$\sim R$				
	Proof : In $\triangle OQP$ and $\triangle ORP$				
	OQ = OR (radii of the same circle)				
	OP = OP (Common) $\sqrt{O} = \sqrt{R} = \operatorname{each} 90^{\circ}$ (The tangent at any point of a circle is perpendicular to the radius through				
	the point of contact)				
	Hence $\Delta OQP \cong \Delta ORP$ (By RHS Criterion) $\therefore PQ = PR$				
	(By CPCT) Hence Proved.				
Q.32	Volume of sphere= $\frac{4}{3} \pi r^3 = \frac{4}{3} \pi \times 10.5 \times 10.5 \times 10.5$	1			
	Volume of cone = $\frac{1}{3} \pi r^2 h = \frac{1}{3} \pi \times 3.5 \times 3.5 \times 3$	1			
	Required number of cones can be formed = $\frac{\frac{4}{3}\pi \times 10.5 \times 10.5 \times 10.5}{1}$				
	$\frac{1}{3}\pi \times 3.5 \times 3.5 \times 3$				
0.22	= 120	1			
Q.33	since pack of playing have 52 cards, therefore $h(5)=52$				
	n(A)=2	1/2			
	$P(A) = \frac{n(A)}{2} = \frac{2}{2} = \frac{1}{2}$	1/2			
	n(S) = 52 = 26 ii) Let B: getting red colour or jack				
	n(B)=28				
	$P(B) = \frac{n(B)}{2} = \frac{28}{2} = \frac{7}{2}$	¹ / ₂			
	iii) Let C: getting not a face card	72			
	n(C)=40	1/2			
	$P(C) = \frac{n(C)}{C} = \frac{40}{10} = \frac{10}{10}$	1/2			
	(n(S)) 52 13				
0.34	Given AP: 20, 17, 14, 11,				
	Let $a_n = -82$, d = 17-20 = -3	1			
	$\Rightarrow a + (n-1)d = -82$				

	Now h= $25\sqrt{3}$ m , using equation (1)							
Q.36	Calculation of	Calculation of mean:						
	Height (in	Number of	Class-mark	d=x-	-A	Fxd		
	cm)	girls (f)	(x)					
	135-140	4	137.5	-10		-40		
	140-145	7	142.5	-5		-35		
	145-150	12	147.5 (A)	0		0		
	150-155	15	152.5	5		75		
	155-160	10	157.5	10		100		
	160-165	2	162.5	15		30		
		$\varepsilon f = 50$				$\varepsilon fd = 130$		
								1/
	For finding clas	ss mark						/2
	For finding , <i>ɛf</i>	d = 130						
	Mean = A + $\frac{\varepsilon f d}{\varepsilon f}$	Mean = A + $\frac{\varepsilon f d}{\varepsilon f}$						
	$= 1475 + \frac{1}{2}$	30						
	-1/75+2	50 6-150 1						
	- 147.5 + 2.	0-130.1						1
	Calculation of	median:						
	Height (in cm) N	lumber of girls (f)		CF			-
	135-140	4			4			-
	140-145	7			11			1/2
	145-150	1	2		23(CF)			-
	150-155	1	5(f)		38			
	155-160	1	0		48			-
	160-165	2	-		50			-
			$\varepsilon f = 50$					-
			-,					-
	N/2 = 50/2 = 2	5						
	Median class is (150-155)							
	l= 150, CF=23, f = 15, h = 5							
	$\left(\frac{N}{2}-CF\right)_{L}$							
	Median = $1 + \left(\frac{2}{f}\right)h$					1		
	$= 150 + (\frac{25 - 23}{25 - 23})$	× 5						-
	-150+0.67	~~~~						
	=150.67							1
	130.07							