KENDRIYA VIDYALAYA SANGATHAN, LUCKNOW REGION

PRACTICE TEST (2020-21)

CLASS-X

SUBJECT-MATHEMATICS BASIC (CODE-241)

Time allowed: 3 hours

Maximum Marks: 80

General Instructions

1. This question paper contains two parts A and B.

2. Both part A and part B have internal choices.

Part-A

1. It consists two sections I and II.

2. Section I has 16 questions of 1 mark each, internal choice is provided in 5 questions.

3. Section II has 4 questions on case study. Each case study has 5 case-based sub-parts. An examinee

is to attempt any 4 out of 5 sub-parts

Part-B

1. Question No.21 to 26 are Very short answer Type questions of 2 marks each.

- 2. Question No.27 to 33 are Short answer Type questions of 3 marks each.
- 3. Question No.34 to 36 are Long answer Type questions of 5 marks each.
- 4. Internal choice is provided in 2 questions of 2 marks, 2 questions of 3 marks and 1 question of 5 marks.

	PART-A						
	SECTION-I						
Q.1	The L.C.M. of two co-prime numbers is always	1Mark					
	OR						
	HCF(a,b) x LCM(a,b) =						
Q.2	The H.C.F. of two consecutive numbers is always						
Q.3	The decimal expansion of an irrational number is always	1Mark					
	OR						
	The decimal expansion of rational number $\frac{3}{40}$ is (terminating/ non terminating						
	reccuring)						
Q.4	The maximum number of zeroes a cubic polynomial can have, is						
Q.5	For what value of k, the following pair of linear equations has no solution:	1Mark					
	2x + ky = 1; $3x - 5y = 7$						
Q.6	Check whether the following system is consistent or not:						
	3x - y = 3; $9x - 3y = 9$						
Q.7	State Basic Proportionality Theorem.	1Mark					

	OR						
	Two triangles are similar if their corresponding angles are equal and corresponding sides are						
Q.8	$\sin \theta = \frac{1}{1}$						
	Find the value of $Sln^-\theta$ + $\frac{1+tan^2\theta}{1+tan^2\theta}$						
	OP						
	Find the value of acute angle e satisfying: $\sin \theta = \sqrt{3} \cos \theta$						
Q.9	Find the angle of elevation of the sun when the shadow of a pole, h metres high, is $\sqrt{3}$ h metres	1Mark					
	long.						
Q.10	What is the angle between tangent of a circle and radius, at point of contact?	1Mark					
Q.11	The area of a semi-circular field is 7700 sq m, then find the diameter of the field.	1Mark					
Q.12	Write the formula to find the length of an arc of a circle with central angle θ , where r is the	1Mark					
0 13	radius of the circle.	1Mark					
Q.13	Write the empirical relationship among mean, median and mode.	1Mark					
Q.15	What is the probability of an impossible event.	1Mark					
	OR						
	A fair die is thrown. Find the probability of getting a number 7 on the upper face of a die.						
Q.16	If P(E) = 0.95 then P(not E) =	1Mark					
	SECTION-II						
Q.17	Case Study-1						
	ck Stock IST ck						
	AA						
	ck / iStock Stock						
	Due to heavy storm an electric wire got bent as shown in the figure. It followed						
	a mathematical shape. Answer the following questions below.						
	s s						
	-6 -5 -4 -3 -2 -1 = 1 -2 + 5 -6 -7 -8						
	anan an						
L							

	i) Name the shape in which the wire is bent						
	a) Spiral b) ellipse c) linear d) Parabola						
	ii)) How many zeroes are there for the polynomial (shape of the wire)						
	a) 2 b) 3 c) 1 d) 0						
	iii) The zeroes o	iii) The zeroes of the polynomial are				1Mark	
	a) -1, 5 b) -1, 3		c)	3, 5	d) -4, 2		
	iv) What will be the expression of the polynomial?						
	a) x ² +2x -3 b) x ² -2x +3 c) x ² - 2x -3 d) x ² +2x+3						
	v) What is the value of the polynomial if x = -1?						
	a) 6	b) -18	c))	18	d) 0		
Q.18	Case Study-	2					
	Beehive						
	A beehive is an enclosed cell structure in which some honeybee species of the subgenus Apis live and raise their young. Each cell is the form of hexagonal shape. In a regular hexagon, there are six edges of equal lengths. Taking O as centre, join all the vertices with the centre.					re	
	- Corresponding	g angles are equal	and				
	- Corresponding	g sides are propor	lional.				
	i) Find the num	her of equilatoral	triangles in the giv	ven figure		1Mark	
		ber of equilateral	thangles in the gi	ven ligure.		TIMUTK	
	(a) 6	(b) 4	(c) 3	8 (h)			
	ii) If the areas o	f two equilateral t	riangles are equa	L then these	are always	1Mark	
		reno equilaterar				1000	
	(a) Similar or	nly (b)Congrue	ent only (c) Both	n similar and o	congruent (d)None of these	2	
	iii) How many t	riangles are simila	r in the given figu	re		1Mark	
	(a) 6	(b) 4	(c) 3	(d) 8			
	iv) Find the area of equilateral triangle if each edge is 6 units.					1Mark	
	(a) 2 sq units (b) 6√3 sq units (c) 4√3 sq units (d) 9√3 sq units						
	v) Find the area of hexagon, if each edge is 6 units.					1Mark	
	(a) 12 sq units (b) 54√3 sq units (c) 36√3 sq units (d) 24√3 sq units						

	A builder wants to build a sump to store water in an apartment. The volume of the rectangular							
	sump will be modelled by $V(x) = (x + 1)(x^2 - 4)$							
	i) He planned it to be of length $(x + 1)$ units and breadth $(x + 2)$ units. How much he has to dig?							
	a) $(x + 1)$ b) $(x - 2)$ c) $(x - 3)$ d) $(x + 2)$							
	II) If $x = 3$ meter, what is the volume of the sump?	1Mark						
	a) $30 m^2$ b) $20 m^2$ c) $15 m^2$ d) $60 m^2$	1 Marti						
	(iii) if $x = 3$ and the builder wants to paint the entire inner portion (excluding root) on the sump,	TIMALK						
	a) $38 m^2$ (b) $20 m^2$ (c) $45 m^2$ (d) $62 m^2$							
	(0) 20 m (0) 20 m	1Mark						
	a) Rs 800 (b) Rs 1800 (c) Rs 1520 (d) Rs 2480	India						
	v) What is the storage capacity of this sump?	1Mark						
	a) 3000 litre (b) 6000 litre (c) 60000 litre (d) 20000 litre	-						
	PART-B							
Q.21	Find the 15 th term of the AP: -4, 4, 12, 20,	2Marks						
Q.22	Prove that the square of the hypotenuse of a right triangle is equal to the sum of squares of the	2Marks						
	other two sides.							
	OR							
	A girl of height 90 cm is walking away from the base of a lamp post at a speed of 1.2 m/s. If the lamp							
	is 3.6 m above the ground, find the length of her shadow after 4 seconds.							
	A							
	C							
	B D E							
	D							
0.00		204.4						
Q.23	Find the coordinates of the point which divides the join of (-1, 7) and (4, -3) in the ratio 2:3.	Ziviarks						
	OR							
	Find the point on the x-axis which is equidistant from (2, -5) and (-2, 9)	<u></u>						
Q.24	Evaluate: $2tan^2 45^\circ + cos^2 30^\circ - sin^2 60^\circ$	2Marks						
0.25	Draw a circle of radius 6 cm. From a point 10 cm away from its centre, construct the pair of tangents	2Marks						
Q.25	to the circle	ZIVIAINS						
0.26	Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle	2Marks						
2.20	which touches the smaller circle.	211101103						
Q.27	Prove that $\sqrt{5}$ is an irrational number.	3Marks						
0.28	A fraction becomes $\frac{1}{2}$ when 1 is subtracted from the numerator and it becomes $\frac{1}{2}$ when 8 is added to	3Marks						
	$\frac{1}{3}$ when a is subtracted from the numerator and it becomes $\frac{1}{4}$ when a is added to							
	its denominator. Find the fraction.							

Q.29	Check whether the equation $6x^2 - 7x + 2 = 0$ has real roots, and if it has, find them.					3Marks			
	OR								
	Find the roots of the quadratic equation $3x^2 - 2\sqrt{6}x + 2 = 0$.								
Q.30	Prove that	$1 + \frac{co}{co}$	$t^2 \alpha =$	COSEC (γ				3Marks
		1+ <i>c</i>	osec a	000000	~ ~ ~				
			-		OR				
	Show that:	$\tan^4 heta$	+ $\tan^2 \theta$	$= sec^4 \theta$	$\theta - sec^2$	9			
0.21	Drove that the	o longths of	tanganta di	aun from a	n ovtornal i	noint to the	circlo aro o		2 Marks
Q.31	Prove that the	e lengths of	tangents un					yual.	3IVIdIKS
Q.32	A solid metallic sphere of radius 10.5 cm is melted and recast into a number of small cones, each of radius 3.5 cm and height 3 cm. Find the number of cones so formed					Siviarks			
0.33	One card is dr	rawn from a	well-shuff	ed pack of	52 plaving ca	ards. Find th	ne probabilit	v of getting	3Marks
	i) A	king of blac	k colour		- 1			, - · 88	
	ii) Fither a red card or a Jack								
	iii) Not a face card								
Q.34	Which term of the AP: 20, 17, 14, is – 82?					5Marks			
	Will zero appear in the above AP? Give reason for your answer.								
Q.35	The angles of depression of the top and bottom of a 8m tall building from the top of a multi storied					5Marks			
	building are 30° and 45°, respectively. Find the height of the multi storied building and the distance								
	between the two buildings.								
	OR								
	The shadow of a tower standing on a level plane is found to be 50 m longer when Sun's elevation is								
	30° than when it is 60°. Find the height of the tower.								
Q.36	A survey regarding the heights in (cm) of 50 girls of class X of a school was conducted and the					5Marks			
	following data was obtained. Find the median height and the mean using the formulae.								
	Height(cm)	135-140	140-145	145-150	150-155	155-160	160-165		
	Number of	4	7	12	15	10	2		
	Girls								