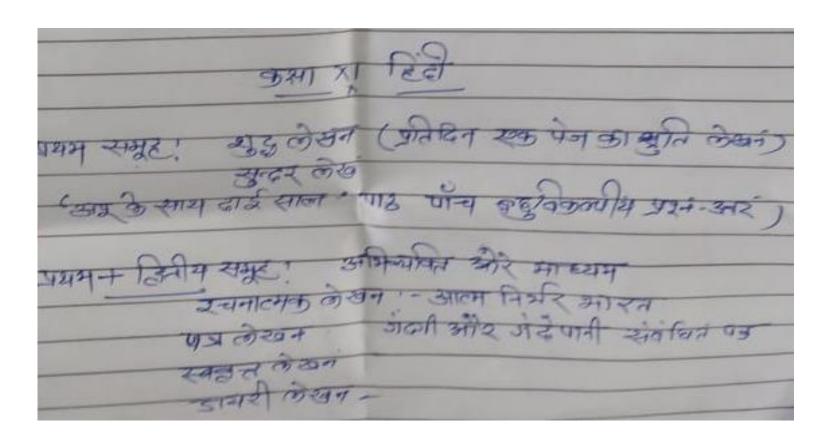
केंद्रीय विद्यालय क्र.-1

अर्मापुर, कानपुर

KENDRIYA VIDYALAYA No.1

ARMAPUR, KANPUR



Autumn Break Holiday Homework CLASS-XI

Autumn Break Holiday Homework

Class-XI Hindi

KENDRIYA VIDYALAYA No.1 ARMAPUR, KANPUR CLASS XI A & XI C SUBJECT: ENGLISH ASSIGNMENT FOR AUTUMN BREAK -2022-23

- 1. Design a poster on the topic "importance of Yoga and exercises" in our life using not more than 50 words.
- 2. You want to sell your car. Draft a suitable advertisement to be published in the local daily using not more than 50 words.
- 3. Prepare a speech on the topic "Harmful effects of Mobile phones" in the life of students, using not more than 120-150 words
- 4. Your school is going to organize a debate on "Social Media and It's Effects" and you will be participating in your school. Prepare your views against & in favour of the motion. (120 150 words each) (5)
- **5.** Prepare Tenses (Grammar) at a glance.
- 6. Learn questions and answers of the chapters which have been taught till 30-09-2022

HOLIDAY HOME WORK FOR AUTUMN BREAK 2022

CLASS XI

SUBJECT PHYSICS

- 1. Write physics practical in record copy which are completed till now.
- 2. Write three activities of section-A in another thin record copy.
- 3. Write down the answers of exercise questions of NCERT book of laws of motion
- 4. Complete the science project of JNNSMEE.

CHEMISTRY – 11th AUTUMN BREAK HOLIDAY HOMEWROK

- 1. To complete NCSC project or make working model for Science Exhibition.
- Complete notes and exercises including examples and intexts of chapter-3 (Classification of elements and Periodicity in Properties).
- 3. To learn Chapter-1 Some Basic Concepts of Chemistry
 Chapter-2 Structure of Atom
 Chapter-3 Classification of Elements and Periodicity
 in Properties
- 4. To complete the practical noterbook.

AUTUMN BREAK _ HOME WORK

CLASS XI

MATHS

1.SETS:-

1	The set of intelligent students in a class is: (a) a null set (b) a singleton set (c) a finite set (d) not a well defined collection	2	If the sets A and B are given by $A = \{1, 2, 3, 4\}$, $B = \{2, 4, 6, 8, 10\}$ and the universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, then (a) $(A \cup B)' = \{5, 7, 9\}$ (b) $(A \cap B)' = \{1, 3, 5, 6, 7, 8\}$
3	If $A = \{1, 2, 3, 4\}$, $B = \{2, 3, 5, 6\}$ and $C = \{3, 4, 6, 7\}$, then (a) $A - (B \cap C) = \{1, 3, 4\}$ (b) $A - (B \cap C) = \{1, 2, 4\}$ (c) $A - (B \cup C) = \{2, 3\}$ (d) $A - (B \cup C) = \{\phi\}$	4	(d) None of these The number of the proper subset of {a, b, c} is: (a) 3 (b) 8 (c) 6 (d) 7
5	Which one is different from the others? (i) empty set (ii) void set (iii) zero set (iv) null set: (a) (i) (b) (ii) (c) (iii) (d) (iv)	6	If the sets Λ and B are as follows: $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}, \text{ then }$ (a) $A - B = \{1, 2\}$ (b) $B - A - \{5\}$ (c) $[(A - B) - (B - A)] \cap A = \{1, 2\}$ (d) $[(A - B) - (B - A)] \cup A = \{3, 4\}$
7	Given the sets $A = \{1,3,5\}, B = \{2,4,6\} \text{ and } C = \{0,2,4,6,8\}.$ Which of the following may be considered as universal set for all the three sets A , B and C ? (a) $\{0,1,2,3,4,5,6\}$ (b) \emptyset (c) $\{0,1,2,3,4,5,6,7,8,9,10\}$ (d) $\{1,2,3,4,5,6,7,8\}$	8	If ϕ denotes the empty set, then which one of the following is correct? (a) $\phi \in \phi$ (b) $\phi \in \{\phi\}$ (c) $\{\phi\} \in \{\phi\}$ (d) $0 \in \phi$
9	Which one of the following is an infinite set? (a) The set of human beings on the earth (b) The set of water drops in a glass of water (c) The set of trees in a forest (d) The set of all primes	10	The set $A = \{x : x \in R, x^2 = 16 \text{ and } 2x = 6\}$ equals (a) ϕ (b) $\{14, 3, 4\}$ (c) $\{3\}$ (d) $\{4\}$
11	A = {x : x ≠ x} represents (a) {x} (b) {1} (c) {} (d) {0}	12	Which of the following has only one subset? (a) { } (b) {4} (c) {4.5} (d) {0}
13	 Which of the following is a null set? (a) {0} (b) {x:x≥0 or x < 0} (c) {x: x² = 4 or x = 3} (d) {x: x² + 1 = 0, x ∈ R} 	14	The shaded region in the given figure is

15	 Which of the following sets is a finite set? (a) A = {x : x ∈ Z and x² - 5x + 6 = 0} (b) B = {x : x ∈ Z and x² is even} (c) D = {x : x ∈ Z and x > -10} (d) All of these 	16	Which of the following is not a null set? (a) Set of odd natural numbers divisible by 2 (b) Set of even prime numbers (c) {x : x is a natural number, x < 5 and x > 7} (d) {y : y is a point common to any two parallel lines}
17	If A and B are non-empty subsets of a set, then $(A-B)\cup (B-A)$ equals to (a) $(A\cap B)\cup (A\cup B)$ (b) $(A\cup B)-(A-B)$ (c) $(A\cup B)-(A\cap B)$ (d) $(A\cup B)-B$	18	Let A, B, C are three non-empty sets. If $A \subset B$ and $B \subset C$, then which of the following is true? (a) $B - A = C - B$ (b) $A \cap B \cap C = B$ (c) $A \cup B = B \cap C$ (d) $A \cup B \cup C = A$
19	If A and B are two sets, then $A \cap (A \cup B)'$ is equal to (a) A (b) B (c) ϕ (d) None of these	20	If A and B are sets, then A ∩ (B - A) is (a) (b) A (c) B (d) None of these

2.RELATIONS AND FUNCTIONS:-

Z. F	RELATIONS AND FUNCTIONS:-		
1	If $A \times B = \{ (5,5), (5,6), (5,7), (8,6), (8,7), (8,5) \}$, then the value A is (a) $\{5\}$ (b) $\{8\}$ (c) $\{5,8\}$ (d) $\{5,6,7,8\}$	2	If $f(x+1) = x^2 - 3x + 2$, then $f(x)$ is equal to: (a) $x^2 - 5x - 6$ (b) $x^2 + 5x - 6$ (c) $x^2 + 5x + 6$ (d) $x^2 - 5x + 6$
3	The Cartesian product of two sets P and Q, i.e., P × Q = φ, if (a) either P or Q is the null set (b) neither P nor Q is the null set (c) Both (a) and (b) (d) None of the above	4	Let $A = \{x, y, z\}$ and $B = \{a, b, c, d\}$. Then, which one of the following is not a relation from A to B? (a) $\{(x, a), (x, c)\}$ (b) $\{(y, c), (y, d)\}$ (c) $\{(z, a), (z, d)\}$ (d) $\{(z, b), (y, b), (a, d)\}$
5	Let R be the relation on Z defined by R = {(a, b) : a, b ∈ Z, a - b is an integer}. Then (a) domain of R is {2, 3, 4, 5,} (b) range of R is Z (c) Both (a) and (b) (d) None of the above	6	Let N be the set of natural numbers and the relation R be defined such that {R = (x, y) : y = 2x, x, y ∈ N}. Then, (a) R is a function (b) R is not a function (c) domain, range and co-domain is N (d) None of the above
7	The domain of relation $R = \{(x, y) : x^2 + y^2 = 16, x, y \in Z\}$ is (a) $\{0, 1, 2, 3, 4\}$ (b) $\{-4, -3, -2, -1\}$ (c) $\{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$ (d) None of the above	8	Let A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} and f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}. Then, (a) f is a relation from A to B (b) f is a function from A to B (c) Both (a) and (b) (d) None of these
9	If $A = \{2, 3, 4, 5\}$ and $B = \{3, 6, 7, 10\}$. R is a relation defined by $R = \{(a, b) : a \text{ is relatively prime to b, } a \in A \text{ and } b \in B\}$, then domain of R is (a) $\{2, 3, 5\}$ (b) $\{3, 5\}$ (c) $\{2, 3, 4\}$ (d) $\{2, 3, 4, 5\}$	10	If $A = \{1, 2, 4\}$, $B = \{2, 4, 5\}$, $C = \{2, 5\}$, then $(A - C) \times (B - C)$ is equal to (a) $\{(1, 4)\}$ (b) $\{(1, 4), (4, 4)\}$ (c) $\{(4, 1), (4, 4)\}$ (d) $\{(1, 2), (2, 5)\}$
11	The domain of relation $R = \{(x, y) : x^2 + y^2 = 16, x, y \in Z\}$ is (a) $\{0, 1, 2, 3, 4\}$ (b) $\{-4, -3, -2, -1\}$ (c) $\{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$ (d) None of the above	12	The domain and range of the relation R given by $R = \{(x, y) : y = x + \frac{6}{x}; \text{ where } x, y \in N \text{ and } x < 6\} \text{ is}$ (a) $\{1, 2, 3\}, \{7, 5\}$ (b) $\{1, 2\}, \{7, 5\}$ (c) $\{2, 3\}, \{5\}$ (d) None of these
13	Domain of $\sqrt{a^2 - x^2}$, $(a > 0)$ is (a) $(-a, a)$ (b) $[-a, a]$ (c) $[0, a]$ (d) $(-a, 0]$	14	If $\phi(x) = a^x$, then $[\phi(p)]^3$ is equal to (a) $\phi(3p)$ (b) $3\phi(p)$ (c) $6\phi(p)$ (d) $2\phi(p)$
15	If $(4x+3, y) = (3x+5, -2)$, then the sum of the values of x and y is (a) 0 (b) 2 (c) -2 (d) 1	16	The number of elements in the set $\{(x, y): 2x^2 + 3y^2 = 35, x, y \in Z\}$, where Z is the set of all integers, (a) 8 (b) 2 (c) 4 (d) 6

17	If the set A has 3 elements and the set $B = \{3, 4\}$, then the number of elements in $A \times B$ is (a) 6 (b) 9 (c) 8 (d) 2	18	If $f(y) = 2y^2 + by + c$ and $f(0) = 3$ and $f(2) = 1$, then the value of $f(1)$ is (a) 0 (b) 1 (c) 2 (d) 3
19	Let $X = \{1, 2, 3\}$. The total number of distinct relations that can be defined over X is 2^n . The value of 'n' is (a) 9 (b) 6 (c) 8 (d) 2	20	If $f(x) = ax + b$, where a and b are integers, $f(-1) = -5$ and $f(3) = 3$, then the value of 'a' is (a) 3 (b) 0 (c) 2 (d) 1

3.TRIGONOMETRIC FUNCTIONS:-

J. I	MIGOROWE I MIC I ORICHOMS.		
1	The value of $\tan^2 \theta \sec^2 \theta (\cot^2 \theta - \cos^2 \theta)$ is (a) 0 (b) 1 (c) -1 (d) $\frac{1}{2}$	2	Value of $\sin 10^\circ + \sin 20^\circ + \sin 30^\circ + \dots + \sin 350^\circ$ is (a) 1 (b) 0 (c) 2 (d) $\frac{1}{2}$
3	If $\tan \Lambda - \frac{1}{2}$ and $\tan B - \frac{1}{3}$, then value of $\Lambda + B$ is (a) π (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{4}$	4	Value of $\left(1 + \cos\frac{\pi}{8}\right) \left(1 + \cos\frac{3\pi}{8}\right) \left(1 + \cos\frac{5\pi}{8}\right) \left(1 + \cos\frac{7\pi}{8}\right)$ is (a) $\frac{1}{8}$ (b) $\frac{3}{4}$ (c) $\frac{2}{3}$ (d) $\frac{5}{8}$
5	Value of $\sin 10^{\circ} + \sin 20^{\circ} + \sin 30^{\circ} + \dots + \sin 360^{\circ}$ is (a) 1 (b) 0 (c) 2 (d) $\frac{1}{2}$	6	Value of tan15°. tan45° tan75° is (a) 0 (b) 1 (c) $\frac{\sqrt{3}}{2}$ (d) -1
7	Value of $\left(1 + \cos\frac{\pi}{8}\right) \left(1 + \cos\frac{3\pi}{8}\right) \left(1 + \cos\frac{5\pi}{8}\right) \left(1 + \cos\frac{7\pi}{8}\right)$ is (a) $\frac{1}{8}$ (b) $\frac{3}{4}$ (c) $\frac{2}{3}$ (d) $\frac{5}{8}$	8	The angle in radian through which a pendulum swings and its length is 75 cm and tip describes an arc of length 21 cm, is (a) $\frac{7}{25}$ (b) $\frac{6}{25}$ (c) $\frac{8}{25}$ (d) $\frac{3}{25}$
9	A circular wire of radius 3 cm is cut and bent so as to lie along the circumference of a hoop whose radius is 48 cm. The angle in degrees which is subtended at the centre of hoop is (a) 21.5° (b) 23.5° (c) 22.5° (d) 24.5°	10	If $\tan \theta = 3$ and θ lies in III rd quadrant, then the value of $\sin \theta$ is (a) $\frac{1}{\sqrt{10}}$ (b) $\frac{2}{\sqrt{10}}$ (c) $\frac{-3}{\sqrt{10}}$ (d) $\frac{-5}{\sqrt{10}}$
11	If A + B = 45°, then $(\cot A - 1)(\cot B - 1)$ is equal to (a) 1 (b) $\frac{1}{2}$ (c) -1 (d) 2	12	The value of tan 75° – cot 75° is equal to (a) $2\sqrt{3}$ (b) $2+\sqrt{3}$ (c) $2-\sqrt{3}$ (d) 1
13	If $\tan A = \frac{1}{2}$, $\tan B = \frac{1}{3}$, then $\tan(2A + B)$ is equal to (a) 1 (b) 2 (c) 3 (d) 4	14	(c) $2-\sqrt{3}$ (d) 1 If $\tan \theta = \frac{a}{b}$, then $b \cos 2\theta + a \sin 2\theta$ is equal to (a) a (b) b (c) $\frac{a}{b}$ (d) None of these
15	If $\sin \theta = \frac{24}{25}$ and $0^{\circ} < \theta < 90^{\circ}$ then what is the value of $\sin \left(\frac{\theta}{2}\right)$? (a) $\frac{12}{25}$ (b) $\frac{7}{25}$ (c) $\frac{3}{5}$ (d) $\frac{4}{5}$	16	(a) a (b) b (c) $\frac{a}{b}$ (d) None of these The value of $\sin \frac{31\pi}{3}$ is (a) $\frac{\sqrt{3}}{2}$ (b) $-\frac{\sqrt{3}}{2}$ (c) $-\frac{1}{\sqrt{2}}$ (d) $\frac{1}{\sqrt{2}}$

4.COMPLEX NUMBERS:-

1	Value of $\left(\frac{2i}{1+i}\right)^2$ is		2	If $\left(\frac{1-i}{1+i}\right)^{100} = a+ib$ then		
	(a) i (c) 1-i	(b) 2 <i>i</i> (d) 1-2 <i>i</i>		(a) $a=2, b=-1$	(b)	a = 1, b = 0
	(c) 1-1	(d) 1-21		(c) $a=0, b=1$	(d)	a = -1, b = 2

If $(x+iy)(2-3i)=4+i$, then (a) $x=-14/13, y=5/13$ (b) $x=5/13, y=14/13$ (c) $x=14/13, y=5/13$ (d) $x=5/13, y=-14/13$	4	If $z_1 = \sqrt{3} + i\sqrt{3}$ and $z_2 = \sqrt{3} + i$, then in which quadrant $\left(\frac{z_1}{z_2}\right)$ lies?
If $4x + i(3x - y) = 3 + i(-6)$, where x and y are real numbers, then the values of x and y are (a) $x - \frac{3}{5}$ and $y - \frac{33}{4}$ (b) $x - \frac{3}{4}$ and $y - \frac{22}{3}$ (c) $x = \frac{3}{4}$ and $y = \frac{33}{4}$ (d) $x = \frac{3}{4}$ and $y = \frac{33}{5}$	6	(a) I (b) II (c) III (d) IV The conjugate of the complex number $\frac{2+5i}{4-3i}$ is equal to: (a) $\frac{7-26i}{25}$ (b) $\frac{-7-26i}{25}$ (c) $\frac{-7+26i}{25}$ (d) $\frac{7+26i}{25}$
The real part of $\frac{(1+i)^2}{(3-i)}$ is (a) $\frac{1}{3}$ (b) $\frac{1}{5}$ (c) $-\frac{1}{3}$ (d) None of these	8	The multiplicative inverse of $\frac{3+4i}{4-5i}$ is (a) $\frac{8}{25} - \frac{31}{25}i$ (b) $-\frac{8}{25} - \frac{31}{25}i$ (c) $-\frac{8}{25} + \frac{31}{25}i$ (d) None of these
$\left(\frac{1}{1-2i} + \frac{3}{1+i}\right) \left(\frac{3+4i}{2-4i}\right) \text{ is equal to :}$ (a) $\frac{1}{2} + \frac{9}{2}i$ (b) $\frac{1}{2} - \frac{9}{2}i$ (c) $\frac{1}{4} - \frac{9}{4}i$ (d) $\frac{1}{4} + \frac{9}{4}i$	10	The value of $(1+i)^4 \left(1+\frac{1}{i}\right)^4$ is (a) 12 (b) 2 (c) 8 (d) 16
Evaluate: $(1+i)^6 + (1-i)^3$. (a) $-2 - 10i$ (b) $2 - 10i$ (c) $-2 + 10i$ (d) $2 + 10i$	12	If $(x+iy)^{\frac{1}{3}} = a+ib$, where x, y, a, b \in R, then $\frac{x}{a} - \frac{y}{b} =$ (a) $a^2 - b^2$ (b) $-2(a^2 + b^2)$ (c) $2(a^2 - b^2)$ (d) $a^2 + b^2$
What is the conjugate of $\frac{\sqrt{5+12i}+\sqrt{5-12i}}{\sqrt{5+12i}-\sqrt{5-12i}}$? (a) -3i (b) 3i (c) $\frac{3}{2}$ i (d) $-\frac{3}{2}$ i	14	(a) $a^2 - b^2$ (b) $-2(a^2 + b^2)$ (c) $2(a^2 - b^2)$ (d) $a^2 + b^2$ The modulus of $\frac{\left(1 + i\sqrt{3}\right)(2 + 2i)}{\left(\sqrt{3} - i\right)}$ is
The argument of the complex number $\left(\frac{i}{2} - \frac{2}{i}\right)$ is equal to	16	(a) 2 (b) 4 (c) $3\sqrt{2}$ (d) $2\sqrt{2}$ If $\frac{(1+i)^3}{(1-i)^3} - \frac{(1-i)^3}{(1+i)^3} = x - iy$ (a) $x = 0$, $y = -2$ (b) $x = -2$, $y = 0$ (c) $x = 1$, $y = 1$ (d) $x = -1$, $y = 1$
	(c) $x = 14/13, y = 5/13$ (d) $x = 5/13, y = -14/13$ If $4x + i(3x - y) = 3 + i(-6)$, where x and y are real numbers, then the values of x and y are (a) $x - \frac{3}{5}$ and $y - \frac{33}{4}$ (b) $x - \frac{3}{4}$ and $y - \frac{22}{3}$ (c) $x = \frac{3}{4}$ and $y = \frac{33}{4}$ (d) $x = \frac{3}{4}$ and $y = \frac{33}{5}$ The real part of $\frac{(1+i)^2}{(3-i)}$ is (a) $\frac{1}{3}$ (b) $\frac{1}{5}$ (c) $-\frac{1}{3}$ (d) None of these $\frac{1}{(1-2i)^2 + \frac{3}{1+i}} = \frac{3+4i}{(2-4i)^2} = \frac{9}{2}i$ (a) $\frac{1}{2} + \frac{9}{2}i$ (b) $\frac{1}{2} - \frac{9}{2}i$ (c) $\frac{1}{4} - \frac{9}{4}i$ (d) $\frac{1}{4} + \frac{9}{4}i$ Evaluate: $(1+i)^6 + (1-i)^3$. (a) $-2 - 10i$ (b) $2 - 10i$ (c) $-2 + 10i$ (d) $2 + 10i$ What is the conjugate of $\frac{\sqrt{5+12i} + \sqrt{5-12i}}{\sqrt{5+12i} - \sqrt{5-12i}}$? (a) $-3i$ (b) $3i$ (c) $\frac{3}{2}i$ (d) $-\frac{3}{2}i$	(c) $x = 14/13, y = 5/13$ (d) $x = 5/13, y = -14/13$ If $4x + i(3x - y) = 3 + i(-6)$, where x and y are real numbers, then the values of x and y are (a) $x - \frac{3}{5}$ and $y - \frac{33}{4}$ (b) $x - \frac{3}{4}$ and $y - \frac{22}{3}$ (c) $x = \frac{3}{4}$ and $y = \frac{33}{4}$ (d) $x = \frac{3}{4}$ and $y = \frac{33}{5}$ The real part of $\frac{(1+i)^2}{(3-i)}$ is (a) $\frac{1}{3}$ (b) $\frac{1}{5}$ (c) $-\frac{1}{3}$ (d) None of these $\frac{10}{(1-2i)^2 + \frac{3}{1+i}} = \frac{3+4i}{(2-4i)} = \frac{9}{2}i$ (c) $\frac{1}{2} + \frac{9}{2}i$ (d) $\frac{1}{2} + \frac{9}{2}i$ (e) $\frac{1}{4} - \frac{9}{4}i$ (f) $\frac{1}{4} + \frac{9}{4}i$ Evaluate: $(1+i)^6 + (1-i)^3$. (a) $-2 - 10i$ (b) $2 - 10i$ (c) $-2 + 10i$ (d) $2 + 10i$ What is the conjugate of $\frac{\sqrt{5+12i} + \sqrt{5-12i}}{\sqrt{5+12i} - \sqrt{5-12i}}$? (a) $-3i$ (b) $3i$ (c) $\frac{3}{2}i$ (d) $-\frac{3}{2}i$ The argument of the complex number $(\frac{i}{2} - \frac{2}{i})$ is equal to

5.LINEAR INEQUALITIES:-

1	The solution set of the inequality $4x + 3 < 6x + 7$ is (a) $[-2, \infty)$ (b) $(-\infty, -2)$ (c) $(-2, \infty)$ (d) None of these	2	Which of the following is the solution set of $3x-7 > 5x-1 \ \forall \ x \in \mathbb{R}$? (a) $(-\infty, -3)$ (b) $(-\infty, -3]$
3	The solution set of the inequality $37 - (3x + 5) \ge 9x - 8(x - 3)$ is (a) $(-\infty, 2)$ (b) $(-\infty, -2)$ (c) $(-\infty, 2]$ (d) $(-\infty, -2]$	4	(c) $(-3, \infty)$ (d) $(-3, 3)$ The solution set of the inequalities $6 \le -3(2x - 4) < 12$ is (a) $(-\infty, 1]$ (b) $(0, 1]$ (c) $(0, 1] \cup [1, \infty)$ (d) $[1, \infty)$
5	Which of the following is the solution set of linear inequalities $2(x-1) < x+5$ and $3(x+2) > 2-x$? (a) $(-\infty, -1)$ (b) $(-1, 1)$ (c) $(-1, 7)$ (d) $(1, 7)$	6	If $\frac{5-2x}{3} \le \frac{x}{6} - 5$, then $x \in$ (a) $[2, \infty)$ (b) $[-8, 8]$ (c) $[4, \infty)$ (d) $[8, \infty)$

7	The solutions of the system of inequalities $3x - 7 < 5 + x$ and $11 - 5x \le 1$ on the number line is (a) 2	8	If $\frac{3x-4}{2} \ge \frac{x+1}{4} - 1$, then $x \in$ (a) $[1, \infty)$ (b) $(1, \infty)$ (c) $(-5, 5)$ (d) $[-5, 5]$
9	If $-5 \le \frac{5-3x}{2} \le 8$, then $x \in$ (a) $\left[-\frac{11}{3}, 5\right]$ (b) $[-5, 5]$ (c) $\left[-\frac{11}{3}, \infty\right)$ (d) $(-\infty, \infty)$	10	If $ x + 2 \le 9$, then (a) $x \in (-7, 11)$ (b) $x \in [-11, 7]$ (c) $x \in (-\infty, -7) \cup (11, \infty)$ (d) $x \in (-\infty, -7) \cup [11, \infty)$

HOME ASSSIGMENT CLASS XI (2022-2023) AUTUMN BREAK COMPUTER SCIENCE/IP

- Which two languages contributed to Python as a Programming Language?
- Is Python an Object Oriented Language?
- What does a cross platform language mean?
- Python is a Free and Open Source language. What do you understand by this feature?
- Which of the following are not valid strings in Python? (a) | Hello | (b) _Hello ' (c) | Hello ' (d) _Hello | (e) {Hello}
- What is None literal in Python?
- What is the difference between an expression and a statement in Python?
- What is block/code block/suit in Python?
- What is the role of indentation in Python?
- What is the error in following Python program with one statement? print("My name is : ", name) Suggest a solution
 - What will be the output of the following code:

```
name='Hari'
age=18
print(name, ", you are ", age, " now but ", end="")
print("You will be ",age+1," next Year")
```

• Predict output:

```
a,b,c=2,3,4
a,b,c=a*a,a*b,a*c
print(a,b,c)
```

- WAP that asks your height in centimeters and converts it into foot and inches.
- What will be the output of the following?

```
print (17//4)
print (17/4)
print(len(str(17//4)))
print(len(str(17/4)))
```

- What will be the output of the following code? Why?
 - (a) 13 or len(13) (b) len(13) or 13
- Python program to convert Kilometers to Miles.
- WAP to find if a given number (0-999) is 1/2/3 digit number.
- What is a truth table? What is its significance?
- Prove algebraically X.Y + X''.Z + Y.Z = X.Y + X''.Z
- What is the difference between source code and object code?
- How is a process different from a program?
- Why are logical errors harder to locate?
- What is an Exception?
- When does these exception occur?
 - (a) Type Error (b) Index Error (c) Name Error

HOLIDAY HOME WORK FOR AUTUMN BREAK 2022 CLASS XI

SUBJECT BIOLOGY

- 1. Write Biology practical in record copy :- Experiment no -1,2,3,4,6&9.
- 2. Experiments Spotting:-1,2&3.
- 3. Write down the notes and assignment questions ans were chapter 5 Morphology of flowering plants.
- 4. Read the following chapters 6,7,8,9&10 and note down the problem for cleaning the chapters in class room teaching.
- 5. Complete the science project of JNNSMEE.

AUTUMN BREAK HOMEWORK

CLASS-11th

SUB: BIOTECHNOLOGY

- 1. Prepare already allotted topics for presentation.
- 2. Prepare your practical file with 05 experiments.
- 3. Do these questions in classwork notebook
 - i) Diagram of <u>plant cell</u> and <u>canimal cell</u> with proper labelling.
 - (ii) Give function and also draw the structure of following:
 - * Cell membrane
 - * Nucleus
 - * Cytoskeleton
 - * Mitochondoia
 - * Plastide
 - * Golgi apparatus
 - * Endoplasnie reticulum
 - * Lysosomes
 - * Ribosomes
 - * Peroxisames
 - (iii) Diagrammatically explain all types of plant tiesues and animal tiesues.

AUTUMN BREAK HOLIDAY ASSIGNMENT

CLASS XI

SUBJECT -ECONOMICS

1.0	Indievaline of the topic	J
2.	Knowledge Content/Research Work	6
3.	Presentation Technique	3
4.	Viva-voce	8
	Total	20 Marks

Suggestive List of Projects:

	Class XI				
•	Effect on PPC due to various government policies	Invisible Hand (Adam Smith)			
•	Opportunity Cost as an Economic Tool (taking real life situations)	 Effect of Price Change on a Substitute Good (taking prices from real life visiting local market) 			
•	Effect on equilibrium Prices in Local Market (taking real life situation or recent news)	 Effect of Price Change on a Complementary Good (taking prices from real life visiting local market) 			
•	Solar Energy, a Cost Effective Comparison with Conventional Energy Sources	 Bumper Production- Boon or Bane for the Farmer 			
•	Any other newspaper article and its evaluation on basis of economic principles	Any other topic			