KENDRIYA VIDYALAYA SANGHTHAN LUCKNOW REGION

SECOND PRE-BOARD EXAMINATION:2020-21

CLASS:XII

SUBJECT:-MATHEMATICS

Max Marks:-80

Time: - 3 hours

General instructions:

(i)This question paper consists of two parts A and B. Each part is compulsory. Part A carries 24 marks and part B carries 56 marks.

(ii) Part A has objective type questions and part B has descriptive type questions.

(iii) There is no overall choice. However, internal choices have been provided in both the parts AandB.

PART-A:

1. This part consists of two sections- I and II.

2. Section I comprises of 16 very short answers type questions.

3. Section II contains 2 case studies. Each case study comprises of 5 case based multiple choice questions. An examinee is to attempt any 4 out of 5 multiple choice questions.

PART-B:

1. This part consists of three sections- III, IV and V.

2 Section III contains 10 questions of 2 marks each.

3 Section IV contains 7 questions of 3 marks each.

4 Section V contains 3 questions of 5 marks each

5 Internal choice is provided in 3 questions of section-III, 2questions of section-IV and 3questions of section –V. You have to attempt only one of the alternatives in all such questions.

PART-A

SECTION-I

1. Find the value of
$$\sin^{-1}(\frac{\sqrt{3}}{2}) + \cot^{-1}(-\sqrt{3})$$
.

OR

Find the value of $sin(2cos^{-1}0.6)$

2. If f: $\mathbf{R} \rightarrow \mathbf{R}$ be a function defined by $f(\mathbf{x}) = |\mathbf{x}|$, Check whether f is one one and onto?

3. If A is a square matrix of order 3 such that |A|=5, find |adj A|

4. If $X_{m\times 3} \cdot Y_{p\times 4} = Z_{2\times b}$ for three matrices X,Y and Z then find the values of m+p+b

5. Solve for x if $\begin{bmatrix} 1 & x \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = 0$

6. If
$$\begin{vmatrix} \vec{a} \\ \vec{a} \end{vmatrix} = 5$$
, $\begin{vmatrix} \vec{b} \\ \vec{b} \end{vmatrix} = 13$ and $\begin{vmatrix} \vec{a} \times \vec{b} \\ \vec{a} \times \vec{b} \end{vmatrix} = 25$ then find the value of $\vec{a} \cdot \vec{b}$

- 7. Find the area of the region bounded by $x^2=4y$, y=2, y=4 and the y axis in the first quadrant.
- 8. Evaluate $\int e^{3\log x} x^4 dx$

OR

9. If a be the order and b be the degree of differential equation $(\frac{d^3y}{dx^3})^2 + 4x(\frac{dy}{dx})^3 + 4y = 0$, find the value of a-2b.

OR

Find what value of n is the following a homogeneous differential equation: $\frac{dy}{dx} = \frac{x^2y - 3yx^2}{x^n + 4y^n}$

10. If $\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\vec{b} = 2\hat{i} + 4\hat{j} + 9\hat{k}$ find a unit vector parallel to $\vec{a} + \vec{b}$

OR

Find the area of the triangle whose two sides are given by the vectors $\vec{a} = \hat{t} + \hat{f} + 4\hat{k}$ and $\vec{b} = \hat{t} - \hat{f} + \hat{k}$.

11. IF $\vec{a} = \hat{i} + 3\hat{j} + 2\hat{k}$ Find the angle between \vec{a} and Z axis.

12. Find the direction cosines of vector whose initial and terminal points are (2, -5, -2) and (-3, 7, 4).

13. Find the distance of point (1,-2,3) from the plane $\vec{r}.(\hat{i}+2\hat{j}+3\hat{k})-4=0$

14. Evaluate $P(A \cup B)$, if 2P(A) = P(B) = 5/13 and P(A|B) = 2/5

15. If A and B are independent events, Find P (B) if $P(A \cup B) = 0.60$ and P(A) = 0.35.

16. The relation R in the set R of real numbers, defined as $R = \{(a, b) : a \le b^2\}$. Check whether relation R is symmetric.

SECTION-II

17. The shape of the window of a house as given in the diagram consists of a rectangle with semicircle. The dimensions of rectangular part of window is shown in the diagram.

On the situation, answer the following questions:

- (a) The perimeter of the window is:
- i) $2x + 4y + \pi x$ ii) $4x + 4y + \pi x$
- iii) $2x + 2y + \pi x$
- iv) None of these
- (b) The Area of window is
- i) $2xy + \frac{\pi x^2}{2}$
- ii) 4xy+ $\frac{\pi x^2}{2}$
- iii) 4xy+ πx^2
- iv) 4xy+2 πx^2

(c) If perimeter of window is P then the Area of window in terms of x is

i)
$$Px - 2x^2 - \frac{\pi x^2}{2}$$

ii) $Px - x^2 - \frac{\pi x^2}{2}$
iii) $Px - 2x^2 - \frac{\pi x^2}{4}$
iv) $Px - x^2 - \frac{\pi x^2}{2}$

(d) If area in above part is denoted by A then value of $\frac{dA}{dx}$

i)
$$P - 2x - \pi x$$

ii) $P - 2x - \frac{\pi x}{2}$
iii) $P - 4x - \pi x$
iv) $P - 4x - \frac{\pi x}{2}$

(e) The value of x for which area of window is minimum

i) $2P/(\pi+4)$ ii) $P/2(\pi+4)$

iii) $P/(\pi+4)$

iv) $P/(\pi+2)$

18. Of the students in a college, it is known that 1200 students reside in hostel and 800 students are day scholars (not residing in hostel). Previous year results report that 40% of all students who reside in hostel attain A grade and 30% of day scholars attain A grade in their annual examination. At the end of the year, one student is chosen at random.

On the situation, answer the following questions:

- The probability that he resides in hostel (a)
- 2 5 (i)
- 1 5 (ii)
- 3 5 (iii)
- None of these (iv)

(b)The probability that he attains A grade if he was day scholar

- 3/10(i)
- (ii) 12/100
- (iii) 4/10
- (iv) 24/100
- (c) The probability he attains A grade
- 27/25 (i)
- 17/25(ii)
- (iii) 31/50
- 9/25 (iv)

(d)The probability that he resides in hostel given that he attains A grade

- (i) 2/3
- (ii) 1/3
- (iii) 2/5
- (iv) 3/5

(e) The probability that he is day scholar given that he he attains A grade

- (i) 2/3
- (ii) 1/3
- 2/5(iii)
- 3/5 (iv)

PART-B SECTION-III

19. If
$$A = \begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix}$$
, show that $A^2 - 6A + 17I = 0$, Hence find A^{-1} .

20. Write the simplest form of $\tan^{-1}\left[\frac{\sqrt{1+x^2}-1}{x}\right]$

21. Find
$$\frac{dy}{dx}$$
 if $\sin^2 x + \cos^2 y = a^2$

OR

Find
$$\frac{dy}{dx}$$
 if x= a(1+cos t) and y= b(t+sin t)

22. Find the points on the curve $y=4x^3-3x+5$ at which tangents are parallel to the line 9x-y+5=0

23. Evaluate
$$\int e^x \frac{(x-3)}{(x-1)^3} dx$$

24. Evaluate $\int_{2}^{5} \frac{\sqrt{x}}{\sqrt{7-x}+\sqrt{x}} dx$

OR

Evaluate $\int_{-3}^{3} (\sin^{7}x + x^{2}) dx$ 25. Solve the differential equation $\frac{dy}{dx} = y \tan x; y = 1$ when x = 0. **OR** Find the general solution of $\frac{dy}{dx} = \frac{x+y}{x}$

26. Find the coordinated of the foot of perpendicular drawn from the origin to the plane $\vec{r} \cdot (2\hat{i} + \hat{j} - \hat{k}) + 5 = 0$

27. If the projection of the vectors $\lambda \hat{i} + \hat{j} - 4\hat{k}$ and $2\hat{i} + 6\hat{j} + 3\hat{k}$ is $\frac{8}{7}$, find the value of λ .

28. A die is thrown twice and the sum of the numbers appearing is observed to be 6. What is the conditional probability that the number 3 has appeared at least once?

SECTION-IV

29. If $x^{2y} + y^{2x} = a^{2b}$, find dy/dx

OR If $y = (\tan^{-1} x)^2$, show that $(x^2 + 1)^2 y_2 + 2x (x^2 + 1) y_1 = 2$.

30. Find the intervals in which the function $f(x) = -2x^3 - 9x^2 - 12x + 1$ is increasing or decreasing.

31. Find the values of a and b such that the function is defined by

$$f(x) \rightarrow \begin{cases} 7, & \text{if } x \leq 3\\ a + bx, & \text{if } 3 < x < 10\\ 21, & \text{if } x \geq 10 \end{cases}$$
, is a continuous function.

32. Evaluate:
$$\int \frac{4x-5}{\sqrt{(x-5)(x-4)}} dx$$

33. The area between $y^2 = 2x$ and x = 8 is divided into two equal parts by the line x = a, find the value of a.

34. Solve the differential equation $3e^x \tan y \, dx + (2 - e^x)sec^2 y \, dy = 0$ OR

Find the general solution of the differential equation $\cos^2 x \frac{dy}{dx} + y = \tan x$

35. Check whether the function $f: \mathbf{R} - \left\{\frac{7}{5}\right\} \to \mathbf{R} - \left\{\frac{3}{5}\right\}$ defined as $f(x) = \frac{3x+4}{5x-7}$ is one one and onto. Also find the value of x for which f(x) = 2.

SECTION-V

36. Using matrices solve the system 2x-3y+5z=11; 3x+2y-4z=-5; x+y-2z=-3OR

Given two matrices
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$ verify that BA=6I.
Use the result to solve the system x-y = 3, 2x + 3y + 4z = 17, y + 2z =7

37. Find the distance of the point (1, -2, 3) from the plane x - y + z = 5, measured parallel to the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$.

OR

Find the point on the line $\frac{x+2}{3} = \frac{y+1}{2} = \frac{z-3}{2}$ at a distance $3\sqrt{2}$ from the point A (1,2,3). Also find the equation of line of this point from given point A.

38. A manufacturer produces two types of steel trunks. He has two machines A and B. The first type requires 3 hours on machine A and 3 hours on machine B. The second type requires 3 hours on machine A and 2 hours on machine B. Machines A and B can work at the most for 18 hours and 15 hours per day respectively. He earns a profit of Rs.30 and Rs.25 per trunk of the first type and second type respectively. How many trunks of each type must he make each day to make maximum profit?

OR

Maximize Z = 5x + 3y Subject to $2x+3y \le 12$, $x+2y \le 7$, $y-3x \le 0$, $x \ge 0, y \ge 0$